ORIGINAL PAPER

Implications of Gestational Weight Gain as A Modifiable Risk Factor for Obesity in Mother and Child

Erica Soma, BA

Exercise Science, Willamette University, Salem, USA

Junggi Hong, PhD, ATC

Assistant Professor of Exercise Science, Willamette University, Salem, USA

Coresponding author: Hong, Junggi, Willamette University, Sparks Center, 900 State Street, Salem, OR 97301, e-mail: Jhong@willamette.edu

Abstract

Background: Obesity is a growing public health concern in the United States with 17.1% and 33.2% of children and women obese and many more at risk for becoming obese. Many obese women have regarded pregnancy as the onset of extreme weight gain, thus efforts to identify the relationship between pregnancy and obesity have been made.

Objective: The purpose of this paper was to examine the relationship between gestational weight gain and maternal obesity, as well as offspring birthweight and subsequent obesity. Method: An online search was performed through Pubmed and Academic Search Premiere for relevant articles. Retrieved articles were assessed based on their relevance to the paper.

Results: This review of the literature determined that the larger the gestational weight gain, the higher the risk for obesity in the mother and child. This is especially true with reference to the gestational weight gain guidelines, and is mostly consistent regardless of limitations in the research. With improvement in many methodological areas, future research can identify the relationship and mechanism explaining the relationship between gestational weight gain to obesity.

Conclusion: These results have a large clinical implication, where more emphasis on education of gestational weight gain guidelines, and exercise and nutritional considerations should be implemented to improve in this area of public health. Gestational weight gain is a potential risk factor for maternal and child obesity and should be examined further due to its long term relevance to obesity.

Key words: obesity, overweight, gestational weight gain, perinatal, birthweight, child, mother, pregnancy

Introduction

Obesity is defined as a body mass index (BMI) above the 95th percentile or greater than 30 for children and adults respectively. It has become a growing health concern within the United States due to its prevalence in all ages and genders. In the United States, 17.1% of children between the ages of 2 and 19 are obese along with 33.2% of adult women, according to results of the National Health

and Nutrition Examination Survey (NHANES) (Ogden et al., 2006). Not only is there a large obesity concern, many women and children are overweight and at risk for becoming obese. Overweight groups are defined as a BMI above the 85th percentile or greater than 25 for children and adults respectively. These at-risk groups consist of 33.6% of children ages 2 to 19 and 61.8% of adult women. Not only does obesity affect a large portion of the population, the prevalence is increasing

www.inernationaljournalofcaringscienes.org

73

yearly (Ogden et al., 2006). Obesity decreases the and retrieved publications were searched for quality of life, and is a large risk factor for chronic relevant citations. Search terms used were diseases such metabolic syndrome, cardiovascular disease, type II diabetes mellitus, 'child', 'obesity', 'long-term', 'short-term', 'weight hyperlipidemia, and hypertension, which ultimately retention', all increase risk of mortality (Crawford et al., 2010).

obese women associate onset of their long term short term weight retention or long term weight excessive weight gain with pregnancy (Bradley, gain in the mother, and birthweight or obesity risk 1985). This has been documented anecdotally and in the child. A total of 16 studies were included in has stimulated research on pregnancy and its long this review. term effects on weight status (Bradley, 1985; Rössner, 1992). Due to the speculation that weight gained during pregnancy, known as gestational weight gain, may be related to the development of obesity, guidelines have been set to optimize fetal growth and maternal health. The Institute of Medicine's (IOM) guidelines for gestational weight gain were published in 1990 and suggest a continuum of the effects of weight gain on the mother and child. Gaining too little weight is associated with increased pregnancy complications such as premature delivery, small for gestational age infants, and low birthweight. Gaining too much weight is related to a higher risk of preeclampsia, gestational diabetes, increased risk of cesarean delivery, difficulty in postpartum weight loss, and large for gestational age infants (Rasmussen & Yaktine, 2009). Due to these known risks, there has been more research on the relationship between gestational weight gain and long term health of the mother and child (Rössner & Öhlin, 1995).

If gestational weight gain can be determined as one starting point for obesity, improving communication about guidelines and methods of controlling gestational weight gain may be a probable preventative measure for obesity. The objective of this review is to discuss the current literature on the effects of gestational weight gain on the short and long term weight status of the mother along with its relationship to birthweight and long term weight status of the child and the clinical implications of this health phenomenon.

Methods

Relevant publications were identified by the online databases, Pubmed and Academic Search Premiere

'pregnancy', 'postpartum', 'mother', 'maternal', 'gestational weight 'birthweight'. Included papers were published after 1990 with gestational weight gain as an Among many contributing factors for obesity, many independent variable. Other desired variables were

Gestational Weight Gain and Postpartum **Weight Retention**

Weight gain during pregnancy is necessary to ensure proper growth and development of the fetus, accounting for the growth of the child and breasts, increasing protein and fat stores, placenta and uterus growth, amniotic fluid, and increased blood volume and body fluids (ACOG Ed. Pamphlet AP001, 2008). Although these aspects of growth are standard, underweight and overweight women are at risk for pregnancy complications such as gestational diabetes, preeclampsia, or delivery emergencies (Weissgerber et al., 2006). Weight gain ranges optimize fetal growth and minimize the obstetric risks associated with excessively high or low weight gain (Rasmussen & Yaktine, 2009)

Table 1: Demographic characteristics of the sample

Weight Category	BMI (kg • m ⁻²)	Suggested Gain (lb.)
Underweight	<18.5	28-40
Normal Weight	18.5- 24.9	25-35
Overweight	25-29.9	15-25
Obese	>30	11-20

Aside from the importance of gestational weight gain for proper growth and outcome of the pregnancy, it has also been related to weight retention postpartum and has been examined with respect to short term weight retention and long term weight gain postpartum (Gore et al., 2003).

May-August

2011

Short Term Weight Retention

Short term research examines weight retention up to one year postpartum because most weight loss happens in this first year and further loss becomes increasingly difficult (Gore et al., 2003). Due to the relevance of short term weight retention, these studies provide a foundation for the relationship between gestational weight gain and postpartum weight retention (Table 2).

Postpartum weight retention has been reported to be higher in women who gain more during pregnancy. Keppel & Taffel (1993) found that women retained 0.9 lb., 1.6 lb., and 4.9 lb. for those who gained less than, according to, or in excess of the recommendations at 10-18 months postpartum. Another study had comparable results where women retained 0.4 lb., 3.7 lb., and 13.5 lb. for gestational weight gains less than, according to, or in excess of the recommendations (Walker, 1996).

Table 2. Short Term Weight Retention

Study	N	Length of Follow- Up (months)	Average Weight Retention (lb.)	Excessive Gain (%)	Variables
Keppel &Taffel, 1993	1,592k	10-18	W: 4.9 B: 12.7	36%	GWG, weight loss, WR, race
Walker, 1996	88	6, 18	6 mo: 7.3 ± 13.2 18 mo: 5.1 ± 14.6	41%	GWG, WR, demographics, reproductive variables, lifestyle
Lederman et al., 2002	47	2-6	B: 2 mo: 18.2± 15.6 6 mo: 17.2 ± 14.1	64%	GWG, WR, breast-feeding
Huang & Dai, 2007	602	6	6 mo: 5.3± 7.9	N/A	GWG, WR, demographics, lifestyle profile
Olson et al., 2003	597	6, 12	6 mo: not reported 12 mo: 3.32 ± 13.1	42%	GWG, WR, food intake, exercise, breast-feeding

W= white, B= black, GWG= gestational weight gain, WR= weight retention

An augmented relationship has been observed for The higher the gestational weight gain, the more obese, black, minority, and women of low income weight the mother has to lose postpartum and the status. A study of obese women determined that up higher her chances of retaining and gaining more to 70% gained excessively, and weight retention weight postpartum. This causes a risk for women was up to 98 lb. (Vesco et al., 2009). Studies have becoming obese in the short term due to pregnancy. shown up to 64% of black women excessively gain Studies determined a 9.3% increase in obesity in a and retain up to 17.2 lb. at 6 months (Lederman et Taiwanese cohort and up to 20% in a black cohort al., 2002). Lederman and colleagues (2002) also of women (Huang & Dai, 2007; Lederman et al., reported 42% of black women gained weight 2002). Although not categorized as obesity, Olson between 2 and 6 months instead of losing it, with et al. (2003) reported 25.6% of their participants almost 20% progressing to obesity. This augmented retained more than 10 lb. at 1 year postpartum, even relationship was similar to the higher retention of though on average weight retention was only 3.32 up to 12.7 lb. in the black participants of Keppel & lb. Taffel (1993). Race and minority status also Most short term studies identified gestational increased likelihood of gaining excessively during weight gain as a key factor in short term weight pregnancy and failing to lose the weight retention with an augmented relationship in obese, postpartum, according to Walker (1996).

www.inernationaljournalofcaringscienes.org

black, and minority populations (Keppel & Taffel,

2011

Vol 4

prevention (Bradley, 1985).

Long Term Weight Gain

Due to the potential obesity risk of excessive gestational weight gain, its impact must be examined in the long term. Although important only three studies examine these long term weight changes (Table 3). The Stockholm Pregnancy and Women's Nutrition (SPAWN) study was a 15 year follow up of women who delivered children during

1993; Walker, 1996; Lederman et al., 2002; Huang 1984-85 in Stockholm (Linné et al., 2003). Women & Dai, 2007; Olson et al., 2003). If gestational were grouped according to obese or normal weight weight gain has an influence on postpartum weight at long term follow up and their gestational weight retention, and may confirm the reports that obesity gains were compared. Of the women who were may originate from pregnancy, gestational weight normal weight at long term, 64% had returned to gain is an important factor when exploring obesity 3.3 lb. of their pre-pregnancy weight by 1 year postpartum. The women who were obese at follow up had significantly higher gestational weight gains (p<0.0001). A shorter 10 year study showed longterm weight was related to gestational weight gain appropriateness and short-term retention where Women who gained as recommended retained only 4.0 lb. by 6 months and 14.3 lb. over 10 years, while the excessive gainers retained 9.2 lb. over short term and gained 18.5 lb. long term (Rooney & Schauberger, 2002).

Table 3. Long Term Weight Gain

Study	N	Length of Follow- Up	Average Long Term Weight Gain (lb.)
Linné et al., 2003	563	15 years	24.5 ± 14.3
Rooney & Schauberger, 2002	795	10 years	13.9
Harris et al., 1997	243	~3	3.4

Harris et al. (1997) examined weight change has examined its relationship to obesity risk in the between an index pregnancy and a second offspring (Table 4). pregnancy in order to determine the effect of one The relationship between gestational weight gain pregnancy on long term weight gain. Maternal and offspring obesity has first been related to weight was corrected for the effect of aging, which offspring was based on the average weight gained per month Organization (WHO) has published weight ranges between pregnancies. After the aging correction for low, normal, and high birthweight or results showed only 3.4 lb. Retention, however the macrosomia where both low and high birthweight average follow up time was only 3 years. This is have various health risks. Schack-Nielsen et al. more comparable to a short term follow up by (2010) determined that for every 4.4 lb. increase in Olson et al. (2003) where retention was 3.32 lb, at gestational weight gain, the average birthweight 12 months. Although aging may play a role in long increased significantly as well. term weight gain, this follow up tends toward short. One study also determined that women exceeding term and the corrections were original and may the IOM guidelines were 765 more likely to have have underestimated the relationship.

Gestational Weight Gain and Child Implications

Due to the implications of gestational weight gain as a risk factor for obesity in the mother, research

birthweight. The World

macrosomic babies. (Frederick et al., 2008). This relationship was also confirmed when a study determined that women grouped as high gestational weight gains had significantly larger babies (Gümüs et al., 2010).

determined that high birthweight was significantly 2008). related to overweight status at 6 and 12 months old

With such a high and increasing prevalence of and between 3 and 5 years of age (Mochonis et al., childhood and adult obesity, research has examined 2008). Of mothers who gained excessively during prenatal characteristics such as maternal gestational pregnancy, 48% of their offspring were obese at 3 weight gain, birthweight, and weight status as years compared to only 23.7% of the offspring from potential risk factors (Ogden et al., 2006) (Table 5). mothers who gained appropriately with a stronger A study on a Greek cohort of preschool children trend with increasing maternal BMI (Olson et al.,

Table 4. Gestational Weight Gain and Birthweight

Study	N	Findings
Gümüs et al., 2010	537	BW and macrosomia were more common in the higher GWG group
Frederick et al., 2008	2670	Above GWG range resulted in an increased risk of a macrosomic infant
Schack-Nielsen et al., 2010	4234	BW was significantly associated with GWG

BW= birthweight, GWG= gestational weight gain

Table 5. Gestational Weight Gain and Offspring Obesity

Study	N	Length of Follow- Up	Findings
Olson et al., 2008	208	6 mo., 3 years	Excessive GWG is related to Ob, BW was related to Ob
Schack-Nielsen et al., 2010	4234	1-14, 42 years	High GWG contributed to half of Ob, modulated by BW and childhood Ob
Stuebe et al., 2009	26,506	36-56 years	Strong relationship of GWG to Ob in obese mothers, Moderate GWG effects on Ob in normal mothers
Gunnarsdottir et al., 2004	3708	50 ± 8 years	BW was associated with Ob, though higher BW did not mean a higher risk of Ob
Mochonis et al., 2008	2374	1-5 years	BW was related to Ob at 6 and 12 months, 3-5 years
Araújo et al., 2009	5160	11 years	Highest BW group had highest Ob, BW more effective than length or ponderal index at predicting Ob

Ob= offspring obesity, GWG= gestational weight gain

The relationship between birthweight and late where birthweight was the best predictor of obesity childhood and adult BMI has also been examined, at 11 years of age when compared to length at birth association between birthweight and adult BMI, for gestational weight gain and birthweight. in a cohort of female nurses (Stuebe et al., 2009). al., 2010; Frederick et al., 2008; Schack-Nielsen et corrections maternal weight status, but is related to childhood which further improves reliability. weight status and risk for offspring obesity as well.

Discussion

with reference to maternal and child future weight in general, or from lifestyle. Harris et al. (1997) outcomes has identified a consistent relationship. attempted to correct for weight gain associated with with the IOM gestational weight gain guidelines is conservative estimate of the effects of gestational important to the future health of the mother and weight gain. A control group for pregnant women is

Although many long term studies had dropouts, this have is expected. Regardless of the dropouts, the fact that Distinctions these studies were performed in longitudinal international circumstances only supports the women who gave their infants up for adoption after evidence further. Dropouts are most often birth. These women would still go through associated with low income and education, and pregnancy and birth, but would not become new minority status (Linné et al., 2003) which would mothers. This would allow researchers to determine only increase the power of the results because of the if this long-term weight gain phenomenon is due to increased obesity prevalence and trend towards the physical act of being pregnant, greater gestational weight gain in these populations motherhood, or a combination of both. (Gore et al., 2003; Ogden et al., 2006).

and ponderal index in a cohort of Brazilian infants The results are supportive of the implications of (Araújo et al., 2009). Gestational weight gain was gestational weight gain, and dropouts only increase attributed to half of the cause of adult obesity, the significance, however there are limitations mediated through birthweight and childhood BMI associated with reliance on self-reported weight, in a study that followed offspring at 14 years and other factors relating to long term weight gain, a into adulthood (Schack-Nielsen et al., 2010). lack of information between short term and long Gunnarsdottir et al. (2004) found a positive term follow up, and different categorizing strategies

though did not find an increased risk for obesity Self-report is used in almost every study discussed however this may be due to the general trend of the in this analysis, and is not an ideal data collection Icelandic population to have high birthweight but method, although in some cases is the only realistic less prevalence of obesity than in the United States option. In order to have valid unbiased conclusions, (Ogden et al., 2006). Adult BMI was found to be research should not rely on self-report. This is not related to both extremes of gestational weight gain to say that the results of these studies should be discounted, because the reliability of self-report has Gestational weight gain influences birthweight, been examined in depth. The NHANES study where a higher than recommended gestational examined the efficacy of self report in a sample of weight gain leads to a higher birthweight (Gümüs et 17,176 participants and determined that with for socioeconomic al., 2010). Further research has shown a link characteristics all self report BMI was comparable between a child's birthweight, childhood obesity to a measured BMI (Stommel & Schoenborn, risk, and even adult obesity risk (Stuebe et al., 2009). Due to the use in most studies the resulting 2009; Schack-Nielsen et al., 2010; Gunnarsdottir et error should be the same in every study, and the al., 2004; Araújo et al., 2009; Mochonis et al., results relatively comparable between studies. Most 2008). Not only is gestational weight gain related to data was corrected for the identified variables,

The long term studies that examined gestational weight gain with reference to maternal long term weight gain were not successful in separating the effects of pregnancy from the life changes The research that examines gestational weight gain associated with becoming a new mother, from aging Although the relationship is dynamic, compliance aging, however their analysis resulted in a very unrealistic because a non-child bearing group would many other confounding variables. between effects of motherhood, and aging could be made by using

> Long-term studies also do not take into account the events that could have occurred during the time

medical event taken into account in these studies, al., 2009). Polley et al. (2002) examined the however its influence on long-term weight gain has effectiveness of an intervention that educated not been shown (Williamson et al., 1994; Linné & women on the importance of appropriate weight Rössner, 2003). Other events could have occurred gain, exercise, and healthy eating and determined leading to long-term weight gain, which consist of that the normal weight intervention group was more detrimental emotional events, major life changes, or likely to stay within their guidelines. The a change in health, all of which were not accounted effectiveness alone of providing education and for. Consistent annual data collection could account encouragement may have dramatic effects on for these other variables and would allow gestational weight gain. researchers to identify pregnancy as the main cause. In addition to emphasis on gestational weight gain for long-term weight gain, or to determine an guidelines, methods of controlling weight gain are alternative cause.

Manv studies used different methods categorizing and comparing both birthweight and by 6 months postpartum has also been related to gestational weight gain which makes comparison participation in aerobic exercise (Olson et al., 2003; between studies problematic. The WHO and IOM Rooney & Schauberger, 2002). Although the have provide research based categorizations for American birthweight and gestational weight gain that have Gynecologists suggest at least 5 days a week of documented relevance, so comparison to these exercise, only 16% of pregnant women reported designations is the most legitimate categorization compliant exercise compared to 27% of non-Birthweight was only according to the WHO designations for birthweight Petersen et al., 2005). reference to the WHO designations and IOM AP001, 2008). guidelines respectively to improve consistency and Due to the relevance of gestational weight gain, due to their confirmed relevance.

Clinical Implications

Due to the long term health relevance of gestational weight gain ranges and have less risk of themselves weight gain, and up to 42% of normal weight and their offspring becoming obese and may help women exceeded the guidelines along with 70% of with controlling the obesity epidemic. obese women, health professionals need to encourage methods of regulating gestational weight Conclusion gain (Olson et al., 2003; Vesco et al., 2009). According to one study, 12% of pregnant women There are many reasons for the increasing reported not having received any information on prevalence of obesity, and even more methods of gestational weight gain while 23% received trying to control and diminish the epidemic. The

period that may affect weight gain. Parity was only weight gains than IOM recommends (Althuizen et

necessary as well. Exercise frequency has been of related to gestational weight gain, and weight loss College of Obstetricians categorized pregnant women (ACOG Committee, 2002;

by two studies (Frederick et al., 2008, Olson et al., Although pregnant women should not be concerned 2008). Similar categorization issues were present with caloric restriction, they need to be aware of with gestational weight gain where only 7 of the 16 caloric requirements for each trimester of studies compared directly to the IOM guidelines pregnancy and other dietary considerations. Special (Keppel & Taffel, 1993; Walker et al., 1996; attention to vitamins and minerals is important for Lederman et al., 2002; Olson et al., 2003; Rooney the ideal development and health of the infant and & Schauberger, 2002; Frederick et al., 2008; Olson women should be educated on eating a healthy diet et al., 2008). Future research should group consisting of vegetables, fruit, milk and dairy, birthweight and gestational weight gain only with grains, proteins, fats and oils (ACOG Ed. Pamphlet

> emphasis on proper gestational weight gain and perinatal exercise and nutrition will begin to address this public health issue. With this emphasis on education, more women will stay within their

information that was incorrect and suggested higher purpose of this paper was to determine the

relationship between gestational weight gain and obesity in the mother and child, and to propose education in a clinical setting to address this public health crisis. Gestational weight gain has been significantly correlated to maternal postpartum weight retention in the short and long term, where exceeding the IOM recommendations leads to higher long term BMI (Keppel & Taffel, 1993; Walker, 1996; Lederman et al., 2002; Huang & Dai, 2007; Olson et al., 2003; Linné et al., 2003; Rooney & Schauberger, 2002; Harris et al., 1997). Gestational weight gain has also been associated with offspring birthweight and future obesity (Olson et al., 2008; Gümüs et al., 2010; Frederick et al., 2008; Schack-Nielsen et al., 2010; Stuebe et al., 2009; Gunnarsdottir et al., 2004; Mochonis et al., 2008; Araújo et al., 2009).

Exceeding the IOM guidelines of gestational weight Frederick I., Williams M., Sales A., Martin D. & Killien M. gain may lead to excessive weight gain and retention in both the mother and offspring. Gestational weight gain is clearly a modifiable risk factor for obesity, and emphasis on the importance of the IOM weight ranges is necessary. Up to 70% of pregnant women excessively gain weight during pregnancy, and pregnancy is identified as the onset of significant weight gain for obese women (Vesco et al., 2009; Bradley, 1985; Rössner, 1992). There are guidelines for gestational weight gain, prenatal exercise, and dietary considerations available for pregnant women, and this information needs to be communicated more effectively. Implementation of these guidelines may increase compliance, decrease postpartum weight retention, and minimize long term obesity development. Gestational weight gain is a modifiable risk factor for obesity in the mother and child and should become a larger concern for health practitioners and patients alike.

References

- Althuizen E., van Poppel M. Seidell J. & van Mechelen W. (2009) Correlates of absolute and excessive weight gain during pregnancy. Journal of Women's Health 18(10):1559-1566.
- American College of Obstetrics and Gynecology. (2008) ACOG Education Pamphlet AP001: Nutrition During Pregnancy. Retrieved November 1, 2010, http://www.acog.org/ publications/patient_ education/bp001.cfm.
- American College of Obstetricians and Gynecologists (1985) Exercise during pregnancy and the postnatal period. Technical Bulletin 189:1-5.

- American College of Obstetricians and Gynecologists Committee (2002) Opinion no. 267: exercise during pregnancy and the postpartum period. Obstetrics and Gynecology 99:171-173.
- Araújo C., Hallah P., Nader G., Neutzling M., deFatima Vieira M., Menzes A. & Victora C.(2009) Effect of birth size and proportionalty on BMI and skinfold thickness in early adolescence: prospective birth cohort study. European Journal of Clinical Nutrition 63:634-639.
- Artal R., & O'Toole M. (2003) Guidelines of the American College of Obstetricians and Gynecologists exercise during pregnancy and the postpartum period. British Journal of Sports Medicine 37(6):6-12.
- Bradley P. (1985) Conditions recalled to have been associated with weight gain in adulthood. Appetite 6:235-241.
- Crawford A., Cote C., Couto J., Daskiran M., Gunnarsson C., Haas K., Haas S., Nigam S. & Schuette R. (2010) Prevalence of obesity, type II diabetes mellitus, hyperlipidemia, and hypertension in the United States: Findings from the GE centricity electronic record database. Population Management 13(3):151-161.
- (2008) Pre-pregnancy body mass index, gestational weight gain, and other maternal characteristics in relation to infant birth weight. Maternal and Child Health Journal 12:557-567.
- Gore S., Brown D. & West D. (2003) The role of postpartum weight retention in obesity among women: a review of the evidence. Annals of Behavioral Medicine 26(2):149-159.
- Gümüs I., Karakurt F., Kargili A., Turhan N. & Uyar M. (2010) Association between pre- pregnancy body mass index, gestational weight gain, and perinatal outcomes. Turkish Journal of Medicine and Science 40(3):365-370.
- Gunderson E. & Abrams B. (2000) Epidemiology of gestational weight gain and body weight changes after pregnancy. Epidemiologic Reviews 22(2):261-274.
- Gunnarsdottir I., Birgisdottir B., Benediktsson R., Gudnason V. & Thorsdottir I. (2004) Association between size at birth, truncal fat, and obesity in adult life and its contribution to blood pressure and coronary heart disease; study in a high birth weight population. European Journal of Clinical Nutrition 58:812-818.
- Harris H., Ellison G., Holliday M. & Lucassen E. (1997) The impact of pregnancy on the long-term weight gain of primiparous women in England. International Journal of Obesity 21:747-755.
- Huang T. & Dai F. (2007) Weight retention predictors for Taiwanese women at six-month postpartum. Journal of Nursing Research 15(1):11-19.
- Keppel K. & Taffel S. (1993) Pregnancy-related weight gain and retention: Implications of the 1990 Institute of Medicine Guidelines. American Journal of Public Health 83(8):1100-
- Larson-Meyer D. (2002) Effect of postpartum exercise on mothers and their offspring: a review of the literature. Obesity Research 10(8):841-853.
- Lederman S., Alfasi G. & Deckelbaum R. (2002) Pregnancyassociated obesity in black women in New York City. Maternal and Child Health Journal 6(1):37-42.

- Linné Y. & Rössner S. (2003) Interrelationships between weight development and weight retention in subsequent pregnancies: the SPAWN study. Acta Obstetricia Gynecologica Scandinavica 82:318-325.
- Linné Y., Dye L., Barkeling B. & Rössner S. (2003) Weight development over time in parous women- The SPAWN study-15 years follow-up. International Journal of Obesity 27:1516-1522.
- Moschonis G., Grammatikaki E. & Manios Y. (2008) Perinatal predictors of overweight at infancy and preschool childhood: the GENESIS study. International Journal of Obesity 32:39-
- Murphy M., Metcalf B., Jeffery A., Voss L. & Wilkin, T. (2006) Does lean rather than fat mass provide the link between birth weight, BMI, and metabolic risk? EarlyBird 23. Pediatric Diabetes 7:211-214.
- Ogden C., Carrol M., Curtin L., McDowell M., Tabak C. & Flegal K. (2006) Prevalence of overweight and obesity in the United States, 1999-2004. JAMMA 295(13):1549-1555.
- Olson C., Strawderman M. & Dennison B. (2008) Maternal weight gain during pregnancy and child weight at age 3 years. Maternal and Child Health Journal 13:839-846.
- Olson C., Strawderman M., Hinton P. & Pearson T. (2003) Gestational weight gain and postpartum behaviors associated with weight change from early pregnancy to 1y postpartum. International Journal of Obesity 27:117-127.
- Petersen A., Leet T. & Brownson R. (2005) Correlates of physical activity among pregnant women in the United States. Medicine and Science in Sports and Exercise 37(10):1748-1753.
- Polley B., Wing R. & Sims C. (2002) Randomized controlled trial to prevent excessive weight gain in pregnant women. International Journal of Obesity 26:1492-1502.
- Rasmussen K. & Yaktine A. (2009) Weight gain during pregnancy: Reexamining the guidelines. National Academies Press; Washington, D.C.

- Rooney B. & Schauberger C. (2002) Excess pregnancy weight gain and long-term obesity: One decade later. Obstetrics and Gynecology 100:245-252.
- Rössner S. (1992) Pregnancy, weight cycling, and weight gain in obesity. International Journal of Obesity Related Metabolic Disorders 16:145-147.
- Rössner S. & Öhlin A. (1995) Pregnancy as a risk factor for obesity: Lessons from the Stockholm pregnancy and weight development study. Obesity Research 3(2):267s-275s.
- Schack-Nielsen L., Michaelsen K., Gamborg M., Mortensen E. & Sorensen T. (2010) Gestational weight gain in relation to offspring body mass index and obesity from infancy through adulthood. International Journal of Obesity 34:67-74.
- Stommel M. & Schoenborn C. (2009) Accuracy and usefulness of BMI measures based on self-reported weight and height: findings from the NHANES & NHIS 2001-2006. BioMed Central Public Health 9:421.
- Stuebe A., Forman M. & Michels K. (2009) Maternal-recalled gestational weight gain, pre-pregnancy body mass index, and obesity in the daughter. International Journal of Obesity 33:743-752.
- Vesco K., Dietz P., Rizzo J., Stevens V., Perrin N., Bachman D., Callaghan W., Bruce F. & Hornbrook M. (2009) Excessive gestational weight gain and postpartum weight among obese women. Obstetrics retention Gynecology 114(5):1069-1075.
- Walker L. (1996) Predictors of weight gain at 6 and 18 months after childbirth: A pilot study. Journal of Obstetric, Gynecologic, and Neonatal Nursing 25:39-48.
- Weissgerber T., Wolfe L., Davies G. & Mottola M. (2006) Exercise in the prevention and treatment of maternal-fetal disease: a review of the literature. Applied Physiology, Nutrition, and Metabolism 31:661-674.
- Williamson D., Madans J., Pamuk E., Flegal K., Kendrick J. & Serdula M. (1994) A prospective study of childbearing and 10-year weight gain in US white women 25-45 years of International Journal of Obesity 18:561-569.